Jump to content

Talk:Additive category

Page contents not supported in other languages.
From Wikipedia, the free encyclopedia

Untitled

[edit]

I have removed the Elementary characterisation. There's an elementary characterisation of Abelian categories, which is pretty slick, and which I intend to describe on that page, and there's an elementary characterisation of pre-Abelian categories too. So I wanted to describe the elementary characterisation of additive categories, the only problem being that it was pretty messy. But I thought that I'd at least indicate its basic idea.

Well, upon further review, it turns out that the elementary characterisation of pre-Abelian categories starts out "Suppose that you have an additive category. ...", which I didn't notice at first. So that wasn't going to be anything interesting. In the light of that, I'm just going to forget the whole thing. (I wrote it, after all.) The text is below if you want to see it; some of it will probably be cannibalised on Abelian_category later too. — Toby 21:45 Jul 20, 2002 (PDT)

Elementary characterisation of additive categories

[edit]

Additive categories can be characterised entirely in terms of elementary category theory, without any reference to the category Ab. One may consider a category with a zero object and all finite products and coproducts. The existence of the zero object will define a notion of zero morphism, as the unique morphism between a given pair of objects that factors through the zero object. Then the zero morphisms and identity morphisms can be used to construct a morphism from the coproduct A + B to the product A × B, modelled after the 2-by-2 identity matrix, which one requires to be an isomorphism. Then using this isomorphism, one can construct a method of adding morphisms, which turns out to be associative and commutative, so that the hom-sets form Abelian monoids. Finally, one requires the existence of a morphsim −: A → A for each object A such that − satisfies a commutative diagram that establishes it as an analogue of multiplication by the integer −1. Then this morphism can be used to prove that the hom-sets are in fact Abelian groups.

We will not spell out this definition in more detail in this article, because it's messy, but it's useful to know that there exists such an elementary characterisation, similar to the (simpler) elementary characterisations of pre-Abelian categories and Abelian categories.


First Condition Necessary?

[edit]

The last line of the definition states

"Also, since the empty biproduct is a zero object in the category, we may omit the first condition. If we do this, however, we need to presuppose that the category C has zero morphisms, or equivalently that C is enriched over the category of pointed sets."

Is this necessary? Doesn't the existence of a zero object ensure the existence of zero morphisms? — Preceding unsigned comment added by 152.3.25.131 (talk) 14:16, 6 February 2012 (UTC)[reply]

[edit]

Hello fellow Wikipedians,

I have just modified one external link on Additive category. Please take a moment to review my edit. If you have any questions, or need the bot to ignore the links, or the page altogether, please visit this simple FaQ for additional information. I made the following changes:

When you have finished reviewing my changes, you may follow the instructions on the template below to fix any issues with the URLs.

This message was posted before February 2018. After February 2018, "External links modified" talk page sections are no longer generated or monitored by InternetArchiveBot. No special action is required regarding these talk page notices, other than regular verification using the archive tool instructions below. Editors have permission to delete these "External links modified" talk page sections if they want to de-clutter talk pages, but see the RfC before doing mass systematic removals. This message is updated dynamically through the template {{source check}} (last update: 5 June 2024).

  • If you have discovered URLs which were erroneously considered dead by the bot, you can report them with this tool.
  • If you found an error with any archives or the URLs themselves, you can fix them with this tool.

Cheers.—InternetArchiveBot (Report bug) 17:22, 26 June 2017 (UTC)[reply]

The definitions given are confusing or incorrect

[edit]

A semiadditive category is one which has a zero object and all binary biproducts. It is a theorem then that every hom-set has a natural abelian monoid structure. An additive category is a semiadditive category in which every morphism furthermore has an additive inverse. The distinction between these isn't made clear in the article. Svennik (talk) 14:06, 16 April 2023 (UTC)[reply]